The modeling of body's immune system using Bayesian Networks
author
Abstract:
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Takestan Department of Health, a center affiliated to Qazvin University of Medical Sciences. According to the goals of the study and using the expert opinion of the laboratory and urologist, 15 variables were selected. The database included both urine analysis and culture tests. The results indicated 99.7% accuracy of the diagnosis for the training data, (75% of total data), and 99.8% accuracy of the diagnosis for testing data (25% of total data). Based on the Bayesian network model, the important covariates influencing the Urinary infection have been proved to be the increase of bacteria and the decrease of white blood cells in different age groups. The results of this study can be used in the context of machine learning and intelligent systems for rapid diagnosis of the disease and the treatment of people suspected of suffering from it.
similar resources
RNA-Seq Bayesian Network Exploration of Immune System in Bovine
Background: The stress is one of main factors effects on production system. Several factors (both genetic and environmental elements) regulate immune response to stress. Objectives: In order to determine the major immune system regulatory genes underlying stress responses, a learning Bayesian network approach for those regulatory genes was applied to RNA-...
full textRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
full textassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
Modeling Supplier Risks Using Bayesian Networks
Purpose – To counteract the effects of global competition, many organizations have extended their enterprises by forming supply chain networks. However, as organizations increase their dependence on these networks, they become more vulnerable to their suppliers’ risk profiles. The purpose of this paper is to present a methodology for modeling and evaluating risk profiles in supply chains via Ba...
full textModeling Inoperability Propagation Using Bayesian Networks
The modeling of critical infrastructure interdependencies is a challenging task. This paper discusses several interdependency modeling requirements and proposes a Bayesian network approach for modeling interdependencies and inoperability propagation. The approach is applied to a case study involving the Japanese critical infrastructure sectors. Survey data published by the National Institute of...
full textLanguage Modeling Using Dynamic Bayesian Networks
In this paper we propose a new approach to language modeling based on dynamic Bayesian networks. The principle idea of our approach is to find the dependence relations between variables that represent different linguistic units (word, class, concept, ...) that constitutes a language model. In the context of this paper the linguistic units that we consider are syntactic classes and words. Our ap...
full textMy Resources
Journal title
volume 5 issue None
pages 205- 220
publication date 2018-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023